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Abstract

Indirect waiting times or access times of patients are an important indicator
for the quality of care of a physician. Indirect waiting times are influenced
by the panel size, i.e., the number of patients regularly visiting the physician.
To study the nature of this influence we develop an M/D/1/K/N queueing
model where we include no-shows and rescheduling. In contrast to previous
work, we assume that panel patients do not make new appointments if they
are already waiting. For a given panel size we calculate the steady state
probabilities for the indirect queue length and further aspects such as the
effective arrival rate of patients. We compare those results to the outcomes
of a simulation and show that the simplifications we used in the analytical
model are verified. The queueing model can help physicians to decide on
a panel size threshold in order to maintain a predefined service level with
respect to indirect waiting times.

Keywords: Health Services, Panel Size, Traditional Appointment Policy,
Access Time, No-shows, Queueing Model

1. Introduction

Appointment planning matches patient demand and health care provider sup-
ply. Good reviews of this research area can be found in (Cayirli and Veral,
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2009) and (Gupta and Denton, 2008). A more recent review of online ap-
pointment planning can be found in Chapter 2 of the PhD thesis (Braaksma,
2015).
Patients can stay informed about health care providers for example through
evaluation portals. Hence, there is an incentive for doctors to pay more atten-
tion to service aspects such as waiting times. In this paper, we focus on the
indirect waiting time or access time, defined as the elapsed time between the
moment the appointment is made and the actual appointment time. Long
indirect waiting times can lead to a deterioration in patients’ health. Some
studies also show that they may increase the probability of a patient being
a no-show (Gallucci et al., 2005). Consequently, doctors should reduce their
indirect waiting times in order to deliver better service to patients and avoid
idle time.
For our investigation, we assume that each doctor has a panel, i.e., a group
of patients who visit on a regular basis. We also assume that all the demand
comes from that panel. The doctor could fix an indirect waiting time service
level; e.g., on average, patients should not wait more than two weeks for
treatment. Then, the doctor must manage the size of the panel in order to
achieve this service level.
Our aim is to model the scheduled appointment queue in order to relate panel
sizes to indirect waiting times.

2. Literature

The model presented in this paper is based on one of the models of (Green and
Savin, 2008). They present two queuing models (M/D/1/K and M/M/1/K)
in order to link the panel size with the average indirect queue length. They
assume that appointment requests are only coming from the panel and that
they come with a constant rate which is independent of the indirect queue
length. Their aim is to find panel sizes which allow the doctor to implement
an open access policy where patients can only make appointments for the
same day. They presume that an open access system can be installed if the
expected probability of getting a same day appointment for a patient is above
a certain threshold, e.g., 80%. This means that 80% of the time the indirect
queue length is shorter than a day. Given the threshold, an upper bound for
the panel size can then be determined.
In (Liu and Ziya, 2014) they decide about the panel size and the offered



capacity in order to maximize profit. There is a fixed reward for treating a
patient and they assume costs for overtime.
In (Zacharias and Armony, 2013) both direct and indirect waiting times are
considered. Again decisions on panel sizes and capacities offered are made
in order to maximize profit.
Further, we mention (Balasubramanian et al., 2010) and (Ozen and Bala-
subramanian, 2013) where patients are divided into groups representing dif-
ferent demands, e.g., average number of appointment requests per year. In
a multi-provider clinic patients can then be relocated from one doctor panel
to another in order to achieve a workload balance between the doctors such
that a minimum number of patients have to change their doctor.
In contrast to (Green and Savin, 2008), we also want to investigate indirect
queues of doctors that operate under a traditional appointment policy, i.e.,
every patient has to make an appointment in a given planning horizon. In
general, the panel sizes under consideration can be bigger than those suitable
for open access as waiting times greater than one day are allowed. But then a
substantial part of the panel might be waiting in the indirect queue. Assum-
ing that patients waiting do not make new appointments makes it necessary
to make the demand rate dependent on the indirect queue length. Hence,
our contribution is to extend the model of (Green and Savin, 2008) in order
to include the analysis of traditional appointment systems.

3. Model

We present a queueing model and a simulation model which extend the
M/D/1/K queueing model and the simulation model presented in (Green
and Savin, 2008). We assume a single server queue modeling the appoint-
ment schedule and therefore the indirect waiting time. Here, we assume that
appointment requests are only coming from the panel and that patients al-
ways accept the next available appointment. The difference to (Green and
Savin, 2008) is that we assume that patients waiting in the queue will not
make new appointments whereas in (Green and Savin, 2008) the rate of ap-
pointment requests is constant independent of the queue length. We will use
the same notation as in (Green and Savin, 2008). We assume that the doctor
can treat a fixed number of patients every day and therefore we assume de-
terministic service times of length T . By λ we denote the individual patient
appointment request rate. We approximate the arrival process for every ser-



vice period as a Poisson process with a parameter dependent on the number
of panel patients not waiting or getting treatment. Therefore, the panel size

being N , we define αi(k) = (λ(N−i)T )k
k!

e−λ(N−i)T as the (approximate) proba-
bility that k patients arrive during a service period given that i patients are
in the system (waiting or getting treatment). Further, we assume a finite
queue capacity of K (corresponding to a finite booking horizon). Following
the notation of (Osaki, 1992, p. 233) we denote our model as an M/D/1/K/N
queue.
As in (Green and Savin, 2008) we will use a no-show function γ which gives
the now-show probability of patients dependent on their indirect waiting
time. For tractability reasons we calculate the no-show probability based on
the queue length at the time of a patient’s treatment rather than on his or
her time of arrival. In addition, no-shows will schedule a new appointment
with probability r.
With a similar argumentation as in (Green and Savin, 2008), we derive ana-
lytical expressions for the stationary distribution of the number of patients in
the system, π(k) being the probability that k = 0, . . . , K are in the system.
We use ρ = λNT .

Proposition 1. The stationary distribution of the number of patients in the
system is given by

π(0) =
1 − rγ(K)

1 − rγ(K) + ρ(
∑K−1

i=0 f(i)) − r
∑K−1

i=1 (γ(K) − γ(i))f(i)

π(k) =
(1 − rγ(K))f(k) N

N−k

1 − rγ(K) + ρ(
∑K−1

i=0 f(i)) − r
∑K−1

i=1 (γ(K) − γ(i))f(i)
,

k =1, . . . , K − 1

π(K) =1 −
(1 − rγ(K))(

∑K−1
i=0 f(i) N

N−k )

1 − rγ(K) + ρ(
∑K−1

i=0 f(i)) − r
∑K−1

i=1 (γ(K) − γ(i))f(i)

where f(k) is a recursion with

f(0) = 1

f(1) =
1

(1 − rγ(0))α0(0)
− 1 =

eρ

1 − rγ(0)
− 1



f(k + 1) =

1

(1 − rγ(k))αk+1(0)
(f(k) − (1 − rγ(k))α0(k) − rγ(k − 1)α0(k − 1))

− 1

(1 − rγ(k))αk+1(0)
(
k∑
i=1

((1 − rγ(k))αi(k + 1 − i) + rγ(k − 1)αi(k − i))f(i)),

k = 1, . . . , K − 2

We also build a simulation model again following (Green and Savin, 2008) in
order to avoid the approximation we used employing the no-show function.
Further, the arrival process can be approximated by a binomially distributed
random number for every service period. This way we do not make an ap-
proximation error for cases when almost the whole population is waiting in
the queue. Moreover, as in (Green and Savin, 2008) the assumption that
every patient accepts the next free appointment can be relaxed.

4. Numerical Experiments

We use the same parameter settings (see Table 1) as in (Green and Savin,
2008). We assume 20 appointment slots per day.

Parameter Definition Value
K Queue capacity 400
λ Individual arrival rate 0.008

day

T Service time 0.05 days
r Rescheduling probability 1
γ0 Min no-show probability 0.01
γmax Max no-show probability 0.31
C Sensitivity parameter 50 days

Table 1: Parameter settings

We also use the same no-show function: γ(k) = γmax − (γmax − γ0)e
−bkT c/C

where k is the queue length and γ(k) the probability of being a no-show. In
Figure 1 the average queue length dependent on the panel size is depicted
for different models.



2,300 2,350 2,400 2,450 2,500 2,550 2,600 2,650 2,700
0

50

100

150

200

250

300

350

400

panelsize

ex
p

ec
te

d
q
u
eu

e
le

n
gt

h

M/D/1/K
M/D/1/K/N
Sim
Sim/N

Figure 1: Expected queue length for different panel sizes for the two models and the
corresponding simulations

The models M/D/1/K and Sim correspond to the models from (Green and
Savin, 2008) whereas the models M/D/1/K/N and Sim/N correspond to the
models presented in this paper. Both simulations started with an empty
queue and were simulated for 40000 warm-up periods (corresponding to 7
years) and 10000 more periods to collect data. The implementation is based
on (Koza, 2014). First, our results for the M/D/1/K model differ slightly
from the results presented in (Green and Savin, 2008). The fundamental be-
havior of the curve is the same but the transition from an almost empty to an
almost full schedule happens for bigger panel sizes. Comparing the different
model approaches, the increase of the M/D/1/K curve is much steeper and
happens for smaller panel sizes than the increase of the M/D/1/K/N curve.
Further, we see that the difference between the results of the analytical model
and the simulation are much smaller in our case.
It is also interesting to note that the queue length distributions are funda-
mentally different between M/D/1/K and M/D/1/K/N. In Figure 2 queue



length distributions with an expected queue length of circa 200 for the two
models are depicted. For the two models this expected queue length is at-
tained for different panel sizes.
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Figure 2: Queue length distributions in comparison

In our model the queue length will most likely be found around the expected
value whereas for the M/D/1/K model the queue length oscillates between
empty and full which is of course an unattractive behavior. It can be shown
with the simulation that the initial queue length has a great influence on the
queue length even after a lot of simulation periods because the queue either
tends to a fully booked schedule or to an empty schedule and then stays there
for a long time.
By rate we denote the request rate only generated by the patients not waiting
or rescheduling. We assume that patients in the indirect queue do not make
new appointments. That means that for long indirect queues patients in the
queue do not make appointments but they would if they were not already
waiting. We call this the hidden demand. Hence, the demand seems smaller
than it should actually be. Conversely, due to the effect of rescheduling
(also more prominent for long indirect queues) there is an extra demand in
addition to the rate leading to a higher effective demand rate. Moreover, it
is important to note that patients get rejected when the indirect queue is
very long. In Table 2 we quantify those effects for different panel sizes. The
calculations of the effects are based on the analytical model.



Effect/Panel size 2500 2600 2700 2800
Average rate 19.21 18.16 18.52 19.26

Average hidden demand rate 0.79 2.64 3.08 3.14
Average effective rate 19.97 20.04 20.63 21.41

Proportion of rejected patients 0.00 0.00 0.03 0.07
Proportion of no-shows 0.04 0.09 0.11 0.11

Table 2: Effects for different panel sizes, rates are measured per day

As you can see in Table 2, the average rate does not change much for large
panel sizes but the effective rate increases due to the increasing proportion
of no-shows that reschedule. In addition, the hidden demand rate increases
substantially and the proportion of rejected patients is significant starting
from a panel size of around 2600. This shows that a doctor should not only
consider the average indirect waiting time but also the proportion of rejected
patients and the hidden demand rate as those are indicators for a possible
lack of care.

5. Conclusion and Outlook

We present a queueing model and a simulation model in order to connect
panel sizes with the distribution of indirect waiting times. The model can
help doctors operating under the traditional appointment policy to decide
about a maximal panel size in order to achieve a service level with respect
to their indirect waiting times and other effects such as the proportion of
rejected patients and the hidden demand rate. Mathematically, the contri-
bution of this paper is the analytical distribution of an M/D/1/K/N queue
where the arrival rate is dependent on the queue length.
Possible future work on the model include a sensitivity analysis for the model
parameters and numerical experiments considering measures such as seeing
a given share of the patients in a fixed time period. Then, other patient be-
haviors such as balking, rescheduling directly (even if not being a no-show)
if the queue is very long or leaving the panel because of long indirect waiting
times could be integrated. Moreover, patients could book several appoint-
ments at a time. They may not always book the next available appointment.
In general, physicians do not operate under a purely traditional appoint-
ment system (only patients with appointments are treated) but also allow
for walk-ins, e.g., urgent cases. This option should be included in the model



considering that the longer the indirect queue the more likely patients will
just walk-in. Furthermore, the idea of (Balasubramanian et al., 2010) and
(Ozen and Balasubramanian, 2013) that patients belong to different demand
groups could be integrated. Then, not only the panel size but also the case
mix is relevant. In addition, the model could be extended to a vacation
queueing system as in (Creemers and Lambrecht, 2009a) and (Creemers and
Lambrecht, 2009b).
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