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Abstract

We consider a stochastic and dynamic decision problem of an innovative pri-
vate household acting as a “prosumer” in the energy market. The household
is equipped with a renewable energy source, with a stationary energy stor-
age device and with an electric vehicle. Its goal is maximization of profits
from both trading energy and offering a car sharing service to customers.
We formulate the problem as a Markov Decision Process and propose two
policies for solving the problem. The policies are evaluated in terms of their
performance.
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1. Introduction

The recent technological progress in the areas of energy storage (Blonbou,
2013) and electric vehicles (Manzetti and Mariasiu, 2015) enables new ways
of utilizing renewable energy. Hence, both companies and private house-
holds that generate renewable energy do face new opportunities of turning
this energy into profits. To ensure high profits, operators of renewable energy
generating units need to constantly make the right decisions about energy
use. In many cases, however, making economically efficient decisions about
the use of currently generated renewable energy is a major challenge. Algo-
rithmic decision support is needed in order to address this challenge.
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In this work, we propose and compare two approaches to algorithmic deci-
sion support for an innovative private household with a source of renewable
energy, battery storage and a plug-in electric vehicle. The household acts as
a “prosumer”, i.e., energy market access is granted and the generated energy
may be used to satisfy the household’s own demand. Moreover, the house-
hold provides a mobility service in terms of sharing its electric vehicle. If the
vehicle is available at the charging station it may be rented by a customer for
a per distance fee. As the households goal is to operate its energy system with
maximum profit, and as each of generated amount of energy, load, energy
market price and transportation demand is subject to stochastic variations
over time, the system operator needs to repeatedly adapt its decisions about
energy flows. At each point in time, decisions are made about how much
energy to transfer between renewable source, storage device, vehicle battery
and electricity grid while satisfying the household’s energy demand.

Within the past few years an increasing discussion about innovative business
models with electric vehicles can be observed (e.g. Budde Christensen et al.,
2012). In this context electric vehicle sharing has been identified as one of the
service-oriented new business models (see, e.g. Kley et al., 2011) that may
involve sharing personal electric vehicles on a peer-to-peer basis (Lue et al.,
2012). Weiller and Neely (2014) present a study of the various energy services
that electric vehicles can provide and conclude that residential applications
such as vehicle-to-home and smart home systems are realizable in the near
future. Moreover, Geelen et al. (2013) stress the need for better service design
that supports private households in their role as prosumers in a smart grid.
Tan et al. (2016) review approaches to integration of electric vehicles into
smart grids and propose the use of bidirectional vehicle to grid technology
in order to optimize the efficiency of renewable energy sources. Concerning
the combination of renewable energy and electric vehicle a number of studies
illustrate that renewables could (Bellekom et al., 2012; Hennings et al., 2013)
and should (Ajanovic and Haas, 2015) be the only source of energy for electric
vehicles. For a recent review on electric vehicles interacting with renewable
energy in smart grid we refer to Liu et al. (2015).

Our work connects the area of electric vehicle services with the area of energy
storage optimization in the presence of renewable energy. We refer to Powell
and Meisel (2015b) for a recent overview of optimization approaches to energy
storage problems, and to Banos et al. (2011) for an overview of optimization
in the presence of renewable energy.



Figure 1: Solid line arrows represent energy flows in
kWh between energy source (E), stationary storage (R),
car battery (B), grid (G), household’s demand (D) and
customer demand (M).

2. Problem Formulation

We rely on the canonical modeling framework proposed by Powell and Meisel
(2015a) for representing the decision maker’s problem as a Markov Decision
Process. New decisions about energy flows are made at discrete points in
time t ∈ {0, ...T} over a given time horizon of, e.g., one week.

2.1. State Variable and Decision Space

At time t the decision maker observes the energy system’s current state

St = (Dt,Mt, Pt, Et, Rt, Bt, At, ft),

where Dt represents the household’s current demand for energy, Pt is the
current retail electricity price, Et is the currently generated renewable energy,
Rt is the current amount of energy in the stationary storage device, Bt is the
current amount of energy in the electric vehicle’s battery and Mt is the current
customer demand for transportation in km. We assume that customers book
the vehicle for a predefined number of time steps and that At always indicates
the number of time steps remaining until the vehicle returns, i.e., At = 0

indicates that the vehicle is on-site. Moreover, we assume that we have access
to forecasts of Dt′ , Mt′ , Pt′ and Et′ for all t′ > t, and that these forecasts are
represented as four vectors ft = (fDt , f

M
t , fPt , f

E
t ).

With capital letters in the superscripts denoting origins and destination of
flows, as given in Figure 1, the decisions at time t may be represented as

xt = (xEDt , xRDt , xBDt , xGDt , xERt , xBRt , xGRt , xRGt , xBGt , xEBt , xRBt , xGBt , xmt ),

where xmt is a binary variable indicating whether or not a customer takes the
electric vehicle. Note that we assume that the decision maker always shares
his car if possible, i.e., if the car is on-site and if the current battery charge



level is sufficient. With these assumptions the set of feasible decisions at time
t is defined by Equations 1–21:

xEDt + ηdRx
RD
t + ηdBx

BD
t + xGDt = Dt + E−t (1)

ηcR(xERt + ηdBx
BR
t + xGRt ) ≤ RC −Rt (2)

ηcB(xEBt + ηdRx
RB
t + xGBt ) ≤ BC −Bt (3)

xRDt + xRBt + xRGt ≤ Rt (4)

xBDt + xBRt + xBGt ≤ Bt (5)

xEDt + xERt + xEBt ≤ E+
t (6)

xERt + xGRt + ηdBx
BR
t ≤ δcR (7)

xRDt + xRBt + xRGt ≤ δdR (8)

xEBt + xGBt + ηdRx
RB
t ≤ δcB (9)

xBDt + xBRt + xBGt ≤ δdB (10)

At ≤ K(1− yt) (11)

1−At ≤ Kyt (12)

M ′t −Bt ≤ K(1− zt) (13)

M ′t −Bt > −Kzt (14)

xmt ≤ zt (15)

xmt ≤ yt (16)

M ′t > −K(1− xmt ) (17)

yt, zt, x
m
t ∈ {0, 1} (18)

xBDt + xBRt + xBGt + xEBt + xGBt + xRBt ≤ K(1− xmt ) (19)

xBDt + xBRt + xBGt + xEBt + xGBt + xRBt ≤ Kyt (20)

xEDt , xRDt , xBDt , xGDt , xERt , xBRt , xGRt , xRGt , xBGt , xEBt , xRBt , xGBt ≥ 0 (21)

We consider the fact that a generating unit such as a wind turbine consumes
energy during operations by letting E−t = −1 ·min(0, Et) and E+

t = max(0, Et).
The (dis-)charge efficiencies of stationary storage and vehicle battery are
denoted as ηdR, ηcR, ηdB and ηcB. Accordingly, we denote the storage device’s
(dis-)charge rates as δ. RC and BC are the storage capacities. M ′t denotes the
transportation demand converted into kWh and K is a very large number.

2.2. State Transition and Objective Function

The transition from state St to successor state St+1 is determined by both
decisions xt and uncontrolled exogenous influences Wt+1. We model these
influences as changes Wt = (D̂t, M̂t, P̂t, Êt, f̂t) of Dt,Mt, Pt, Et and ft.

The profit at a point in time results as the sum of (a) money made by selling
energy to the market, (b) money gained from car sharing, (c) opportunity
costs of satisfying the household’s demand from renewables, minus (d) the
money spent on buying energy. The total profit at time t is defined as

C(St, xt) = Pt(Dt + ηdRx
RG
t + ηdBx

BG
t − xGRt − xGBt − xGDt ) + αMtx

m
t ,

where α is the fee we charge the car sharing customers per km. The decision
maker aims at finding an optimal policy, i.e., an optimal decision rule, Xπ

t (St),
that given any system state St returns the best feasible decisions. His overall



goal is the maximization of the expected sum of profits over the entire time
horizon, which results into the objective function

max
π∈Π

Eπ
∑

t=0...T

C(St, X
π
t (St)). (22)

3. Policies

Due to the well-known curses of dimensionality (see, e.g., Powell, 2011) prob-
lem (22) typically turns out to be computationally intractable for real-world
applications. As an optimal policy cannot be computed, we propose and
compare the performances of two alternative policies.

Policy Function Approximation (PFA). PFAs are analytic functions that
map states to decisions without solving an optimization problem. We pro-
pose a PFA, XPFA

t (St|θL, θU ), with tunable parameters θL and θU . The PFA
is in the spirit of the PFA proposed by Powell and Meisel (2015b) for an
energy storage problem. For the sake of brevity, we do not provide a formal
definition of the PFA, but describe its logic at each point in time t. As much
of Et as possible is used for satisfaction of the household’s demand. Then,
as much of the remaining energy as possible is transferred to the stationary
storage. As much as possible of the still remaining energy is then transferred
to the car battery. If part of the demand is still unsatisfied and if Pt ≤ θL,
we buy energy at the market in order to satisfy the remaining demand. If
Pt > θL, we first rely on the stationary storage as much as possible, before
we rely on the car battery as much as possible and buy any additional en-
ergy needed for demand satisfaction at the market. If Pt > θU , as much
energy from the two storages as possible is sold to the market, and if Pt ≤ θL,
as much energy as possible is bought at the market and stored in the two
batteries.

Lookahead (LA) Policy. We propose a deterministic LA policy XLA
t (St|θH),

with the lookahead horizon as the tunable parameter θH . The LA policy
determines the decisions xt by solving the optimization problem

arg max
x̃t

t+θH∑
t′=t

fPtt (f
D
tt + ηdRx̃

RG
tt′ + ηdBx̃

BG
tt′ − (x̃GRtt′ + x̃GBtt′ + x̃GDtt′ )) + α · fMtt · x̃mtt′ ,

where the set of feasible decisions is defined along the lines of constraints
1–21 for each t′ with t ≤ t′ < t + min(T − t, θH), and where the decision
vectors for points in time t . . . t + min(T − t, θH) are represented by x̃t =

(x̃tt, x̃t,t+1, ..., x̃t,t+min(T−t,θH)). For notational convenience we define fDtt = Dt,
fMtt = Mt, fEtt = Et and fPtt = Pt.
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(a) Weekly profits with α = 0.2.
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Figure 2: Comparison of weekly profits.

4. Computational Results

In this section, we showcase one illustrative example of the policies’ per-
formances. The considered problem instance is derived from Problem 2 in
Meisel and Powell (2016). We adopted the characteristics of all stochastic
processes, but scaled them to the numbers that correspond to an average
household in Germany. The capacity of the stationary storage is RC = 10

kWh with δR = 3.3 kW and ηR = 0.9. The simulated time horizon is one
week and one time interval is set to 15 minutes. The electric vehicle has
battery capacity BC = 85 kWh with δB = 10 kW, ηB = 0.85 and a consump-
tion rate of 20 kWh per 100 km. The stochastic demand for transportation
varies between 0 and 100 km. We estimate the quality of a policy by generat-
ing n = 100 sample paths for the exogenous processes and by approximating
Eπ

∑
t=0...T C(St, X

π
t (St)) by sample average.

Figure 2a compares the performances of PFA (with manually tuned param-
eters) and LA policy (with different lookahead horizons) at a per km fee of
α = 0.2 e, which is about the average fee in German car sharing services.
The figure allows for the conclusion that the LA policy should be preferred
over the PFA provided that θH > 33. However, Figure 2b shows that the
advantage of the LA policy critically depends on α. As soon as α > 0.3 the
tuned PFA clearly outperforms the LA policy.

5. Conclusions

We present a model of a dynamic decision problem of an innovative household
that acts as a “prosumer” in the energy market and that provides customers
with a e-vehicle sharing service. For solving the problem we propose and
compare a lookahead policy and a policy function approximation. Our com-
putational results show that the preferred policy depends on the service fee.
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